Может ли Луна каким-то образом влиять на результаты тиражей? А вдруг? Давайте вспомним физику.
Отбросим все побочные факторы, лототроны и прочее и возьмем один-единственный шарик лежащий на ровной горизонтальной поверхности. Какие силы воздействуют на него? Р= mg (cила тяжести) и R - сила реакции опоры, равная так же mg, но противоположно направленная
Рис. 1.
Теперь представим, что это единственный шар в лототроне (не будем вносить пока других , просто чтоб не мешали J). Включаем лототрон…
Рис. 2
Теперь на шар действуют две силы сила тяжести P=mg и сила от потока воздуха F лот. Очевидно, что сила воздействия F лот. в какой-то момент времени станет равной силе тяжести и будет равна mg, в этот момент шар зависнет. Ну, и нанесем силу F moon - предполагаемую силу тяготения от воздействия Луны. Нанесем ее условно в под прямым углом к вертикали , поскольку в этом случае она вносила бы максимальный сдвиг.
Рис. 3
F moon = a*М шарика*М луны/R2
Запишем известные величины.
а = 6,672*10-11 Н*м2/кг2(гравитационная постоянная)
М луны = 7,346*1022кг
R мин= 3,564*108 м
R макс= 4,067*108 м
r = 1.74*106 м радиус Луны.
М шарика = 0,01 кг я не знаю сколько весит шарик , но предвидя результат думаю, что будет не важно весит он 1 грамм или 10 килограмм.
Тогда вычислим все это дело численно: будем принимать минимальное расстояние, так как в этом случае сила максимальна
F moon = (6,672*10-11*7,346*1022*10-2)/(1,27*1017)=((6,672*7,346)/1,27 )*10-8Н=3,86*10-7Н(макс)
F moon = (6,672*10-11*7,346*1022*10-2)/(1,65*1017)=((6,672*7,346)/1,65 )*10-8Н=2,97*10-7Н(макс)
Разница в силах 3,86*10-7 - 2,97*10-7= 8,9*10-8Н
Сила тяжести будет равна.
P=mg = 0.01*9.8=9.8*10-2 H
Сравним эти две силы
P/F moon = 9.8*10-2/3.86*10-7 = 2.54*105
Сила тяжести в 254000 раз больше! Давайте приведем какой-нибудь, может несколько и некорректный, но наглядный пример:
На одну чашу весов положим монету в 1 грамм веса, а на вторую 254 кг гирю. О каком влиянии идет речь?
Конечно, нет возражений в том, что приливы "дело рук" Луны. И силы возникают колоссальные, чтобы переместить такую массу воды. Но тут речь идет о системе Луна-Земля, чьи вес и размеры взаимно более-менее соизмеримы. И воду во время прилива следует рассматривать не отдельно от Земли, как некое тело, а совместно с Землей. И вес Земли, согласно формуле играет как раз на увеличение силы взаимного притяжения. Даже космические корабли корректируют свою орбиту не так часто. И как раз в сторону удаления от Земли. Со временем высота орбиты не возрастает, корабли не "затягивает" в космос, их притягивает к Земле.
И даже если предположить, что Луна "потянет" шарик, то не уместнее было бы предположить, что "потянет" она его вместе с лототроном и зданием и тиражной комиссией. Но даже если и так, если Луна будет тянуть только шарик, то каково же должно быть до нее расстояние.(допустим, что Земля и Луна не взаимодействуют). Сила должна быть соизмерима с P=mg шарика, ну, хотя бы в 100 раз меньше ее.
F moon =mg/102
F moon = a*М шарика*М луны/R2=m*g/102
Давайте найдем из этого выражения R
R2=(a* М шарика * М луны * 102)/(m*g)
R2=6,672*10-11*7,346*1022*102/9.8
R2=4.9*1013
R=7*106 метров = 7000 километров. (а минимальное расстояние в перигее 3,564*105 км)
При таком расстоянии - 7000 км, можно говорить о том, что сила взаимного притяжения Луны и шарика будет хотя бы соизмерима (в 100 раз меньше) с силой тяжести шарика mg. Думается, что если Луна приблизиться на такое расстояние, нам будет не до лотереи. J. Или шарик должен иметь вес соизмеримый с весом Луны. А еще есть сопротивление воздуха, а еще рядом "болтаются" 48-40 таких же шариков, взаимно ударяясь, и меняя траекторию друг друга, неравномерность потока воздуха в лототроне. А может, я не верно посчитал?
Автор статьи Александр Полищук (pah1@rambler.ru)
)* Кто интересуется данным вопросам - на сайте есть Информер по Луне.
(Необходима поддержка JAWA в браузере. Примечание админа)